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Abstract
Aim: We demarcate marine benthic global bioregions based on fossil and recent oc-
currence data. Our main goal is to compare past and present biogeography and to 
extract major abiotic drivers of biogeographical patterns. We specifically test the 
hypothesis that global biogeography has changed markedly after the climatic fluctua-
tions of the past 10 Myr.
Location: Worldwide.
Time period: Recent; late Miocene–Pleistocene interval.
Major taxa studied: Benthic taxa with a rich fossil record: Bivalvia, Brachiopoda, 
Bryozoa, Gastropoda, Echinodermata, Decapoda and reef corals.
Methods: We use occurrence data from the Ocean Biogeographic Information 
System (OBIS) and the Paleobiology Database to construct compositional networks 
and outline objective marine bioregions of benthic marine invertebrates using the 
“infomap” community detection algorithm. We assess the association of modern bi-
oregions with a variety of environmental parameters by applying multivariate statis-
tical analyses, such as principal components analysis, random forests and multiple 
logistic regressions.
Results: Recent first‐order bioregions for the coastal ocean are, in general, consistent 
across all taxa. Seawater temperature surpasses nutrients, primary production and 
salinity as a predictor of modern bioregion distributions. Despite substantial climatic 
variations, late Cenozoic biogeographical patterns recorded in fossils are very similar 
to modern ones.
Main conclusions: Biogeographical boundaries within oceans are strongly controlled 
by temperature gradients, but open oceanic and continental barriers determine the 
global biogeographical structure. The joint structure of a landmass distribution, deep 
ocean basins and the latitudinal temperature gradient defines bioregionalization of 
the benthic marine habitat, which did not change substantially over the past 10 Myr.
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1  | INTRODUC TION

We know intricate details about the geographical distribution of life 
in both terrestrial and marine habitats, but much less about the driv-
ers of the macroscale structure. Plate tectonics and climate shape 
the principal biogeographical patterns on land (Ficetola, Mazel, & 
Thuiller, 2017), and similar processes are sometimes invoked for the 
marine realm (Costello et al., 2017; Spalding et al., 2007). A rigorous 
and quantitative assessment of benthic marine biogeography is still 
lacking, although revealing these factors and the stability of global 
structure would greatly aid the success of broad‐scale conservation 
strategies (Lourie & Vincent, 2004) and sustainable resource man-
agement (Lourie & Vincent, 2004; Olson & Dinerstein, 1998) in the 
face of anthropogenic climate change (Perry, Low, Ellis, & Reynolds, 
2005). Understanding the determinants of biogeography is also im-
portant for a suite of fundamental research questions in ecology and 
evolution about speciation processes (Briggs & Bowen, 2013; Heads, 
2005; Stigall, 2013) and taxonomic richness patterns (Beaugrand, 
Rombouts, & Kirby, 2013; Chaudhary, Saeedi, & Costello, 2016; 
Tittensor et al., 2010).

1.1 | Determinants of biogeography

Deep oceanic basins and landmasses form obvious barriers to 
species dispersion that are ultimately controlled by plate tectonic 
processes. Therefore, shallow‐water biogeography and continent 
configuration are likely to be connected closely. Such a connec-
tion is suggested, but not explicitly explored, by the association 
between past global marine biodiversity and the fragmentation 
of continents (Zaffos, Finnegan, & Peters, 2017). Longitudinal 
(i.e., north–south) coastlines are split into chains of bioregions 
(Valentine, Foin, & Peart, 1978), implying that variables with 
latitudinal gradients play a major role in shaping the realm‐level 
pattern. These include the direct effect of ambient temperature 
and dissolved oxygen concentration on species distribution pat-
terns (Pörtner & Knust, 2007; Sunday, Bates, & Dulvy, 2012), but 
changes in primary production and nutrient concentrations are 
also associated with boundaries of marine bioregions (Longhurst, 
2007). Finally, different preferences of seawater salinity are also 
expected to influence biogeographical patterns (Costello et al., 
2017). Revealing the history of biogeography by using phyloge-
ography (Briggs & Bowen, 2013) or fossil distribution patterns, 
and by analysing the distribution of present‐day bioregions, is ex-
pected to contribute to our understanding of their determinants.

1.2 | Past conditions

Most extant marine invertebrate species have been present for 
the last 10 Myr and should thus enable a comparison between re-
cent and fossil biogeographical patterns. There are indications for 
the long‐term stability of pelagic ecosystems at the level of oceanic 
gyres (Sibert, Norris, Cuevas, & Graves, 2016), but there are no stud-
ies on the stability of benthic marine biogeography.

Environmental conditions have varied greatly since the late 
Miocene, potentially affecting global oceanic biogeography. 
Progressive cooling (Raymo & Ruddiman, 1992), cold snaps in the 
late Miocene (Herbert et al., 2016) and a warmer interval in the 
Pliocene (Brierley et al., 2009; Fedorov et al., 2006) preceded the 
Pleistocene ice age. The habitable area changed owing to the inter-
mittent sea‐level rises and falls driven by glacial–interglacial cycles 
(Ludt & Rocha, 2015). The resulting environmental changes could 
have had notable effects on global bioregionalization by changing 
patterns of nutrient supply, primary production, salinity and ambient 
temperature.

1.3 | Approaches to revealing 
biogeographical structure

The discipline of marine biogeography has yet to embrace organism 
occurrence data, which have contributed to a more objective deline-
ation of terrestrial bioregions and to a better understanding of abi-
otic controls without circular reasoning (Ficetola et al., 2017; Holt et 
al., 2013; Kreft & Jetz, 2010; Vilhena & Antonelli, 2015). In the mod-
ern ocean, most of the traditional global partitioning schemes are 
semi‐quantitative and incorporate several abiotic variables (Ekman, 
1953; Longhurst, Sathyendranath, Platt, & Caverhill, 1995; Spalding 
et al., 2007; Spalding, Agostini, Rice, & Grant, 2012; Watling, 
Guinotte, Clark, & Smith, 2013) or have been limited to a few higher 
taxa (Briggs & Bowen, 2012; Kulbicki et al., 2013). Establishing bio-
geographical patterns from fossils suffers from the same problems, 
relying either on subjective criteria (e.g., Westermann, 2000) or on 
taxon‐specific analyses (Harper et al., 2013; Rojas, Patarroyo, Mao, 
Bengtson, & Kowalewski, 2017; Vilhena et al., 2013).

A robust partitioning approach should handle taxon occurrence 
(and, if available, phylogenetic) information in an automatic and re-
producible way (Kreft & Jetz, 2010). It should also be independent 
from abiotic variables and should be applicable to occurrences of 
any kind, for instance to fossils. Owing to the potential plasticity 
of biogeographical boundaries in the marine realm (Briggs, 1995; 
Costello et al., 2017; Ekman, 1953), there might not be a single solu-
tion to the problem of biogeographical partitioning (Kreft & Jetz, 
2010). Although recent advancements (Costello et al., 2017) towards 
a completely quantitative global structuring bring us closer to this 
goal, the applicability of a taxonomically synoptic approach in fossil 
contexts and the comparability of its results are yet to be tested. 
This last step is essential to assess the stability of large‐scale biogeo-
graphical structures in the face of environmental changes.

1.4 | Objectives

Our primary objective is to assess the long‐term stability of shal-
low marine biogeographical structure. To test our key hypothesis 
that the global biogeographical structure changed considerably in 
response to environmental change, we first outline and character-
ize objective marine biogeographical units by applying community 
detection methods (Rosvall & Bergstrom, 2008) on compositional 
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networks (Vilhena & Antonelli, 2015). We choose our focus to be 
on shallow‐water benthic invertebrate groups that have a good 
fossil record. In this way, we can assess the applicability of the 
best partitioning method for fossil occurrences, whilst keeping 
fossil and recent data comparable. Secondly, we evaluate the role 
of abiotic predictors in shaping benthic biogeography. We hy-
pothesize that continental configuration governs the distribution 
of bioregions via landmass and open ocean barriers, whereas the 
latitudinal gradient of seawater temperature sets the locations 
of their contacting boundaries. We expect that temperature has 
smaller effects on the faunal composition of bioregions than land-
masses and open‐ocean boundaries because it is more temporally 
dynamic. Thirdly, we compare modern and fossil biogeographical 
schemes from the past 10 Myr, which we expect to show different 
patterns. Despite the considerable changes in the abiotic environ-
ment, we find that bioregions have remained remarkably stable 
over the past 10 Myr.

2  | METHODS

2.1 | Data

We downloaded point occurrence data of extant marine species 
from the Ocean Biogeographic Information System (OBIS) database 
(https://www.iobis.org) on 2 June 2017. The queried taxa comprise 
the mollusc classes Bivalvia and Gastropoda, the phyla Brachiopoda 
and Echinodermata, and the orders Decapoda (Crustacea) and 
Scleractinia (Cnidaria). Occurrence data were cross‐referenced with 
the World Register of Marine Species (WoRMS) database (https://
www.worms.org/, downloaded on 14 September 2015) for taxo-
nomic corrections and for homogenizing suprageneric taxonomic 
information. Using the “z3” resolution coastlines and land polygons 
of the OpenStreetMapData inventory (https://openstreetmapdata.
com/), we identified occurrences that fell on land and were not 
within 100 km (error margin based on the possible rounding of deci-
mal input data in degrees) distance from coastlines and omitted them 
from all analyses. To restrict our analysis to benthic fauna, the gas-
tropod superorder Pteropoda was omitted, and the decapod group 
is represented only by the benthic Achelata, Anomura, Astacidea, 
Brachyura, Gebiidea and Polycheilda infraorders. As the data focus 
on shallow‐water environments, the generally deep‐water azoox-
anthellate and apozooxanthellate stony corals were also omitted 
(Cairns, 2007). The genus list of Kiessling and Kocsis (2015) was used 
to filter non‐zooxanthellate corals (https://datadryad.org/resource/
doi:10.5061/dryad.mv32t).

Environmental data included a global bathymetry model 
(ETOPO1; Amante & Eakins, 2009) downloaded from the National 
Geophysical Data Center at a resolution of 0.125°. We down-
loaded additional environmental variables from the Bio‐Oracle 
v2.0 dataset (Assis et al., 2018; Tyberghein et al., 2012) that rep-
resent conditions between 2000 and 2014 to use as predictors 
for the bioregion distributions. The variables include annual mean 

sea bottom temperature (SBT) and its range, mean dissolved O2 
concentration and salinity at the bottom, and sea surface SiO4

4−, 
NO3

2− and PO4
3− concentrations. Sea surface temperature ap-

proximates shallow‐cell bottom temperature very well (ρ = 0.95), 
therefore it was not considered in the analysis. We also included 
primary productivity at both the surface and the bottom as poten-
tial predictors of global biogeographical patterns (see Supporting 
Information Appendix S1).

OBIS does not provide information on the spatial extent of sam-
ples, so we aggregated the point occurrence data to hexagonal grid 
cells, forming a tessellated icosahedral grid handled in the R package 
“icosa” (Kocsis, 2017). This approach has the advantage that gridded 
cells are nearly uniform over the surface of Earth in terms of cell size 
and shape. We implemented multiple grid resolutions to assess the 
influence of geographical grid resolution on the patterns of biore-
gions. We base our key results on an intermediate‐level resolution 
grid [with a cell area of c. 65,000 km2, using the tessellation vec-
tor (4, 7)], as this resolution is representative of a wider range of 
geographical resolutions (see Results). Abiotic variables were also 
binned to the same grids by averaging raster points in a cell that rep-
resented environments shallower than 200 m.

Random noise is expected to have a large effect on the biogeo-
graphical partitioning where the number of occurrences is low in 
grid cells. Therefore, we introduced a minimum occurrence quota 
per geographical cell. If not mentioned explicitly, this threshold was 
set to 20 occurrences, balancing geographical cell retention with 
removal of low‐information cells (Supporting Information Appendix 
S1). For this occurrence quota, we treated multiple entries of a spe-
cies within a cell as different occurrences.

To be consistent with earlier partitioning schemes, we separate 
“shallow” and “deep” environments at a depth of 200 m (Briggs & 
Bowen, 2012; Longhurst et al., 1995; Spalding et al., 2007). Both the 
depth and the coordinate entries in OBIS contain errors; therefore, 
the ETOPO1 bathymetric map was used to assess the likely depth 
of occurrences. Given that shallow water is more likely to be sam-
pled, we chose to assign cells to the shallow environment if there 
was at least one 0.125° × 0.125° pixel of “shallow” environment in 
the cell. After filtering, 3,679,862 occurrences could be assigned to 
the shallow environment and were used in biogeographical analyses 
(Supporting Information Figure S1.1 and Table S1.1).

For fossil occurrence data, we mined the Paleobiology Database 
(PBDB; https://www.paleobiodb.org) on 7 July 2017. The down-
loaded occurrences comprised the same groups as in the modern 
dataset. We matched collections with the dynamic time‐scale of the 
Fossilworks portal (https://www.fossilworks.com), then analysed 
the last, late Miocene–Pleistocene time slice. Fossil biogeography is 
based on considerably time‐averaged data. Nevertheless, we argue 
that the use of this coarse temporal resolution is justified by the 
lack of major extinctions in the marine realm from this interval. Taxa 
that were registered to be freshwater or terrestrial in WoRMS were 
omitted from both the recent and the fossil datasets. Owing to the 
lower data density, fossil occurrences were binned to a coarser grid 
than the recent ones [cell area c. 354,000 km2, with the tessellation 

https://www.iobis.org/
https://www.worms.org/
https://www.worms.org/
https://openstreetmapdata.com/
https://openstreetmapdata.com/
https://datadryad.org/resource/doi:10.5061/dryad.mv32t
https://datadryad.org/resource/doi:10.5061/dryad.mv32t
https://www.paleobiodb.org
https://www.fossilworks.com
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vector (4, 3)]. After filtering occurrences that were not identified to 
species level, 62,176 fossil occurrences remained in the dataset for 
analysis.

2.2 | Biogeographical partitioning using 
network analysis

We transformed the species/grid cell contingency table (adjacency ma-
trix) to a bipartite occurrence network (Vilhena & Antonelli, 2015) using 
the R package “igraph” (Csárdi & Nepusz, 2006). This network com-
prises nodes that represent grid cells and, separately, the species that 
occur in them, and the edges (linking the grid cell and species nodes) 
indicate whether a species in question occurs in a grid cell or not. This 
network is bipartite in nature because nodes representing species can 
connect only with nodes representing grid cells, and vice versa.

To extract bioregions from the occurrence data, we ran commu-
nity detection algorithms (Fortunato & Hric, 2016) on both the bi-
partite graphs and their grid cell projections (Supporting Information 
Figure S1.2). The edge weights in the projected, unipartite graphs 
(containing only nodes that represent geographical cells) were set 
according to the number of shared species between two nodes. 
However, to incorporate changes in sampling intensity, we adopted 
the “connection strength” (CS) of Rojas et al. (2017) as edge weights 
in the unipartite graph:

where k and l indicate different geographical cell nodes, Γ(k) denotes 
the neighbours of k (species nodes) in the bipartite graph, and C(k) indi-
cates the number of collections in the cell k, as a proxy for sampling in-
tensity. We used the number of occurrences in grid cells as proxies for 
sampling, and in those cases C(k) denotes the number of occurrences 
in cell k. The effect of this correction is minor (Supporting Information 
Figure S1.3), but it prevents the inflation of the number of shared spe-
cies between two nodes when sampling intensity is above average.

Amongst the plethora of community detection methods, the “in-
fomap” (Rosvall & Bergstrom, 2008) algorithm was favoured because 
of its validation in previous biogeographical analyses (the procedure 
is also referred to as “map equation”; Bloomfield, Knerr, & Encinas‐
Viso, 2017; Rojas et al., 2017; Vilhena & Antonelli, 2015; Vilhena et 
al., 2013). The approach has its roots in information theory and is 
based on the information quantity accumulated by random walk-
ers on the network. We also tested other algorithms, but “infomap” 
performed best, based primarily on the low spatial overlap amongst 
inferred bioregions. We calculated spatial overlap by computing 
the spherical characteristic hulls of bioregions (see Supporting 
Information Appendix S1). Spatial overlap is the proportion of the 
total overlapping area (number of cells) and the area covered by at 
least one bioregion. We applied the same partitioning scheme to the 
different subsets of occurrence data.

We also partitioned the fossil occurrences after dividing the data 
into three geological time bins. In other words, data from a single 

cell (Dj) were divided into age‐specific subsets (Dj
i) that represent 

the same geographical locality (cell j) but different geological ages 
(age i). The partitioning algorithm was repeated for each of the 
three geological ages in the last 10 Myr (late Miocene, Pliocene and 
Pleistocene). Partitioning these spatiotemporal containers (kj

i) in a 
single network with the same methods resulted in units that have 
almost the same geographical extent, but are traceable through time 
(Kiel, 2017; Kocsis, Reddin, & Kiessling, 2018).

As point occurrence data do not represent complete geograph-
ical ranges, we tested the effects of absent records. We iteratively 
reran the main partitioning algorithm on randomly selected (boot-
strapped) occurrence records to assess the sensitivity of results (i.e., 
bioregion robustness). In order to contrast the output similarity of 
diverse partitionings, we calculated the adjusted mutual information 
(AMI; Vinh, Epps, & Bailey, 2009) between the overlapping parts of 
two partitionings (U and V). This metric behaves in a similar manner 
to a correlation coefficient, but it cannot be negative, varying only 
between zero and one; AMI is zero when the association between 
U and V is completely random, and it is one if the two partitionings 
are identical.

2.3 | Abiotic parameters and bioregion assignment

To display variation in the environmental variables, we applied prin-
cipal components analysis (PCA) to the geographical cell means of 
environmental variables. In order to show more between‐bioregion 
variation, the PCA eigenvectors were calculated only with the cen-
troids of the bioregions, before we projected the individual cells into 
the rotated space. The variables were standardized to a mean of zero 
and unit variance before analysis. To link changes of environmental 
variables to bioregion assignments, we tabulated the vectors be-
tween their centroids in the rotated space. To characterize which 
environmental variables drive the bioregion transitions, the angles 
between the transition vectors and the vectors of the environmental 
variables were calculated and rotated to the [0°, 90°] quadrant. This 
allows a numerical assessment of their degree of association, with 
lower values (equivalent to more parallel vectors) meaning a closer 
relationship, and higher values meaning a more distant one. The me-
dian angle for each environmental vector was computed.

As an alternative assessment of the influence of environmen-
tal variables on the membership of cells to bioregions, we also ap-
plied random forests of 2,000 classification trees (Finnegan, Heim, 
Peters, & Fischer, 2012; Prasad, Iverson, & Liaw, 2006). The advan-
tage of this machine‐learning approach is that it does not assume 
a pre‐defined relationship between the predictor and explanatory 
variables; therefore, it can uncover hidden structure in the data. The 
importance of variables was calculated using the R packages “party” 
(Strobl, Boulesteix, Zeileis, & Hothorn, 2007) and “randomForest” 
(Liaw & Wiener, 2002). In “party”, we used the function “cforest()”, 
which builds a random forest using conditional inference trees. This 
step avoids biased variable selection in the “randomForest()” pro-
cedure (Strobl et al., 2007). To limit the effect of collinear variables, 
we compared random forests including all variables with results 

(1)CSkl=
Γ(k)∩Γ(l)

C (k)+C(l)
,k≠ l,
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excluding the variables that resulted in correlations of ρ ≥ 0.7 be-
tween variables. Known causal relationships (e.g., the determination 
of dissolved oxygen by water temperature) aided the identification 
of variables to drop.

We tested the effect of changes in environmental variables and 
shortest water distance on bioregion boundaries using a multiple lo-
gistic regression model. In this framework, pairs of sampled cells can 
represent either the same or different bioregions, defining a binary 
response variable, zero (same bioregion) or one (different bioregion). 
This response (zero or one) was modelled using the absolute differ-
ences in the abiotic explanatory variables and the shortest water dis-
tances between the respective pair of cells (i.e., given large changes 
in an abiotic parameter from one cell to another cell, is the probability 
higher that the bioregion assignment will change?). Cell pairs were 
selected based on the following criteria: (a) the two cells must be 
connected by seawater without entering a third bioregion; and (b) if 
the two cells belong to a different bioregion, at least one of them has 
to be on the boundary of the bioregion to which it is assigned. Cell 
pairs in which both cells came from the internal parts of different 
bioregions were not considered. As an exhaustive look‐up of all cell 
pairs was not feasible owing to the complex spatial configuration and 
high number of sampled geographical cells, we sampled the pool of 
eligible cell pairs with random walkers. We generated 100 indepen-
dent random walks of 107 cell steps and extracted cell pairs that fit-
ted the above criteria. Although not all cell pairs were recovered, the 
overwhelming majority were found and integrated into the model.

We used additive instead of multiplicative modelling, as the numer-
ous interaction terms of abiotic variables are difficult to interpret. The 

extremely high ratio of observations to explanatory variables lends 
spurious significance for all variables in predicting the response param-
eter. Neither stepwise model selection based on the Akaike information 
criterion (AIC; Burnham & Anderson, 2002) nor Wald’s Z‐tests were ef-
fective in filtering irrelevant parameters. Therefore, the abiotic param-
eters were z‐scored before modelling, and we relied on the magnitude 
of coefficient estimates and the Z statistics to rank the importance of 
the variables. We used the D2 statistics (Guisan & Zimmermann, 2000) 
to express the total predictive capacity of the models.

2.4 | Remarks on programming and software use

Except for the “Louvain” algorithm, we ran all analyses in the R pro-
gramming environment (R Development Core Team, 2017). We parti-
tioned the network of the total dataset with both the “igraph” and the 
console application (https://www.mapequation.org/) implementation 
of “infomap”. A two‐level hierarchy output (bioregions and cells) is con-
strained in “igraph”. We tried to reveal a nested structure of the biogeo-
graphical partitioning with the console application, but only traces of a 
multi‐level hierarchy were present (see Results). We preferred “igraph” 
for most analyses, as it and the console application provided almost 
identical results, but “igraph” allowed a faster workflow. In the analyti-
cal scripts, we used functions from the namespaces of R packages listed 
under Supporting Information Appendix S2. Unless noted otherwise, 
results of iterative methods, such as resampling and certain simulations, 
are based on 100 trials. The plotted maps show equirectangular projec-
tions; the continent configurations are calculated with the GPlates 2.0 
software with the rotation file of Matthews et al. (2016).

F I G U R E  1   Biogeographical partitioning of the recent species‐level dataset (OBIS). Data comprise occurrences of seven higher taxa 
(bryozoans, brachiopods, bivalves, gastropods, zooxanthellate stony corals, echinoderms and decapods). The partitioning is based on the 
“infomap” (Rosvall & Bergstrom, 2008) algorithm applied to a unipartite geographical cell network (Rojas et al., 2017), where each cell holds 
≥20 occurrences. (a) Bioregions are indicated by colours (online version): circles denote sampled cells (above minimum occurrence quota); 
and background shapes represent interpolations based on spherical characteristic hulls (L = 3,500 km). The modularity of this partitioning is 
0.56. Dashed lines represent the 30 and 60° latitudinal circles. (b) The bioregion areas expressed as cell counts. Percentage values indicate 
the stability based on bootstrap resampling (100 trials): upper values describe the partitions; and lower values indicate the mean of the 
individual stability of constituent cells. Abbreviations of bioregions ordered by size: Tr‐IP: tropical Indo‐Pacific; Arc: Arctic; Tr‐WA: Western 
Atlantic; Aa: Antarctic; Eu: European; Te‐Au: temperate Australian; NZ: New Zealandian; Tr‐EP: tropical East Pacific; YS: Yellow Sea; Tr‐EA: 
tropical East Atlantic; SAf: South African. See Supporting Information Appendix S3 for the shapefile of the partitioning [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://www.mapequation.org/
www.wileyonlinelibrary.com
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3  | RESULTS

3.1 | Partitioning objective marine bioregions

3.1.1 | Modern bioregions

We establish 11 objective bioregions for shallow‐water marine ben-
thic animals (Figure 1). Alternative partitioning methods yielded dif-
ferent biogeographical partitionings (Supporting Information Figure 
S1.4), but the original, “unipartite‐infomap” network approach 

performs best in terms of spatial overlap (Supporting Information 
Figure S1.5). The identified bioregions are insensitive to the effects 
of spatial resolutions (Supporting Information Figures S1.6 and 7). 
Only the Baltic Sea emerges as an additional, independent bioregion 
at very fine spatial resolutions. Traces of a multi‐level hierarchy can 
be detected using such fine grains, but the only affected area is the 
Antarctic bioregion, which could be separated to an Antarctic sensu 
stricto and a South American subunit. No additional levels of global 
hierarchy are present with the best‐performing “unipartite‐infomap” 

F I G U R E  2   Individual partitioning results for the seven benthic taxonomic groups using the same methods as in Figure 1. Despite vast 
differences in sampling and diversity, the emerging units are spatially consistent and are relatively similar for the different taxa. This is 
also indicated by high adjusted mutual information (minimum = 0.61, decapods vs. corals). |P| denotes the number of bioregions. Colours 
of bioregions (online version) are calculated based on their distances to the centroids of bioregions shown in Figure 1. See Supporting 
Information Appendix S3 for the shapefile of the partitionings [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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approach. The partitioning is also remarkably stable under changes 
in both within and above cell‐level sampling parameters (Supporting 
Information Figure S1.8).

The size distribution of our bioregions is highly skewed 
(Figure 1b). About 80% of all species are endemic to a single biore-
gion, but not all bioregions are dominated by endemic species. The 
value of endemicity ranges between 29% and 78%, and larger biore-
gions tend incorporate more endemic species (ρ = 0.67, p = 0.021). 
Despite the high dissimilarity amongst bioregions (Supporting 
Information Figure S1.9, mean Jaccard distance = 0.96), patterns of 
community nestedness suggest that some bioregions resemble “col-
onies” of larger bioregions, rather than standing out as independent 
“mainlands” (i.e., dissimilarity attributable to species turnover). For 
example, the Yellow Sea (YS), the South African (SAf) and temper-
ate Australian (Te‐Au) bioregions are characterized by substantially 
lower endemism and also show an increased nestedness component 
of faunal dissimilarity in connection to the Tr‐IP bioregion (Supporting 
Information Figure S1.9).

3.1.2 | Taxon‐specific partitioning

Most features of biogeographical structure are concordant amongst 
taxonomic subsets (Figure 2), despite profound phylogenetic dis-
tance and different sampling patterns (Supporting Information 
Appendix S1). The high AMI (Supporting Information Table S1.2, av-
erage of taxon vs. total partitioning = 0.84) suggests that the parti-
tioning is driven by the same factors. Similar to the total partitioning, 
the number of biogeographical units is modest in all cases.

Most taxa share a unified temperate south‐American–Antarctic 
bioregion, which never falls into the same bioregion as the similar 
latitude New‐Zealandian bioregion. Despite the shared general pat-
terns, there are considerable differences amongst the taxon‐specific 
partitionings. Only the Isthmus of Panama structures the distribution 
of zooxanthellate stony corals (Figure 2c), whereas the East‐Pacific 
barrier has relatively minor effects. The Arctic and European biore-
gions are not separated for bryozoans. Decapods and echinoderms 
do not separate into a temperate Australian and a New‐Zealandian 
bioregion.

3.2 | Determinants of biogeography

3.2.1 | Environmental variables

Bioregions are mostly delimited by land or vast distances of open 
ocean, which confirms the importance of plate tectonics as a main 
determinant of marine biogeography. Besides this primary struc-
ture, bioregions within oceans are latitudinally divided, suggesting 
that changes in the oceanic environmental conditions also have an 
influence on the bioregion distribution. Ordination (Figure 3a) and 
random forest analysis of environmental parameters suggest that, 
amongst physicochemical seawater properties, temperature plays 
a dominant role in defining modern biogeographical structure. 

Bioregions are distinguished by mean annual sea bottom tempera-
ture (SBT; Table 1). Although the temperature envelopes of some 
bioregions overlap (Figure 3b), bioregions within the same envelope 
are separated by land or deep ocean barriers.

Multiple logistic regression on cell membership via possible trav-
elling routes suggests that bioregion transitions are more likely to be 
associated with mean SBT differences than with any other parame-
ter. This model indicates that temperature is at least twice as effec-
tive in predicting bioregion transitions as water distance (Table 1), 
and it outperforms by far other abiotic variables, such as changes in 
salinity, primary production and SBT range. Translating changes of 
seawater temperature to distance via their effect on species com-
positional dissimilarity (Supporting Information Figure S1.10) shows 
that, on average, a change of 1°C in seawater temperature is equiv-
alent to a spatial distance of 1,400 km, which is much more than 
the global average latitudinal temperature gradient of c. 220 km/°C. 
The average SBT difference between contacting bioregions (11.3°C) 
translates to nearly 15,000 km of spatial distance.

3.2.2 | The influence of boundary types on 
bioregion composition

To assess the effects of different boundary types on the faunal 
similarity amongst bioregions, we drafted a graph of bioregions, 
based on their geographical distribution (Figure 4). Out of 55 po-
tential connections, we identify 29 direct neighbours. Neighbouring 
bioregions have significantly greater similarity (Wilcoxon rank sum 
test, p <0.0001, n = 55) compared with more distant ones. Between 
the neighbouring bioregion pairs, three major types of boundaries 
were defined: (a) 13 latitudinal, probably temperature‐related, di-
rectly contacting boundaries; (b) six open ocean boundaries; and (c) 
five land boundaries. We identified another five connections around 
the Antarctic as both latitudinal and open ocean boundaries. These 
were omitted from further assessment because they confounded 
two boundary types. We expect latitudinal (a) boundaries to be 
more permeable to faunal diffusion (e.g., temporary barrier break-
downs) than the oceanic (b) and landmass (c) boundaries. The faunal 
similarities are not dependent on boundary type (Kruskal–Wallis 
test with boundary types as categories and based on total Jaccard 
dissimilarity, p = 0.129). Results are the same (p = 0.333) when only 
the turnover component of dissimilarities is considered (total dis-
similarity—nestedness component; Supporting Information Figure 
S1.9).

3.3 | Palaeontological application

3.3.1 | Similarity between the recent and the last 
10 Myr

Application of the same partitioning method to fossil occurrences 
of the last c. 10 Myr (Figure 5) resulted in a remarkably similar pat-
tern of bioregionalization to that of the modern ocean. This result is 
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also reflected by the high mutual information between modern and 
fossil partitionings (AMI = 0.81; between Figure 5 and Supporting 
Information Figure S1.6a). As the number of sampled cells is differ-
ent in the recent and fossil partitionings, we contrasted the number 
of bioregions in the jointly covered area. At this coarser geographical 
resolution, there are 11 and 10 bioregions in the fossil and recent 
partitioning, respectively. The difference between the number of bi-
oregions in the two partitionings is not significant (p = 0.159, based 
on a bootstrap resampling of cells). Most present‐day bioregions are 
maintained in the fossil partitioning and have similar boundaries. 
The relatively complex structure of the eastern Pacific, indicated by 
the fossil biogeography, is likely to be the result of including fossils 
from both before and after the closure of the Isthmus of Panama (at 
c. 3 Ma; O’Dea et al., 2016).

3.3.2 | History of biogeographical units

The present‐day bioregions can be traced through time (Figure 6). 
The partitioning result of the simultaneous clustering of the late 
Cenozoic ages is remarkably similar to those that result from their 
individual treatment (Supporting Information Figure S1.11). Despite 
the profound climate change, there are no major changes in the po-
sitions of the bioregions. The similarity of ancient and current bio-
geographical partitionings indicates that most bioregions have been 
present for ≥10 Myr. Owing to the lower sampling levels, the parti-
tionings in Figure 6 are noisier than the one outlined by the total data 
(Figure 5). However, the Arctic bioregion extends further south in 
the Pleistocene than today, and the North‐eastern Pacific (NEP) and 
South‐eastern Pacific (SEP) temperate bioregions (Figure 5) remained 
separate in the Pleistocene. Meanwhile, the recent data suggest a 
single, individual bioregion for most of the west coast of America.

4  | DISCUSSION

Benthic bioregions are not only methodologically robust, but also 
stable through time. We reject the hypothesis that the global bio-
geographical patterns changed considerably over the last 10 Myr. 
The observed stability of the bioregions indicates that despite the 
varying environmental conditions, the main determinants of bioge-
ography remained relatively unchanged over the analysed interval.

4.1 | Biogeographical partitionings

4.1.1 | Comparison with other biogeographical 
partitioning schemes

The outlined bioregions resemble the realm‐level partitions of the 
Marine Ecoregions of the World (MEOW; Spalding et al., 2007), but 
differences include a more distinct longitudinal pattern. For exam-
ple, the Atlantic Ocean is split into western and eastern units, and 
New Zealand is separated from temperate Australia. In contrast, our 

F I G U R E  3   Environmental determination of benthic bioregions 
via the association of abiotic parameters with the partitioning 
shown in Figure 1. (a) Principal component analysis of geographical 
cells with the averages of standardized parameters from the Bio‐
Oracle v2.0 datasets (Assis et al., 2018; Tyberghein et al., 2012). 
Points indicate geographical cells, and diamonds indicate averages 
for the bioregions. Only the centroids were used to calculate 
eigenvectors. Bioregion changes are most prominent along the 
sea bottom temperature (SBT) vector (Table 1). The percentages 
of variance explained are 49.04% for principal component (PC) 1 
and 29.69% for PC 2. (b) Scaled density of bioregion cells in the 
dimension of annual mean SBT. The dotted line indicates the mean 
density. Vertical lines delineate arctic, temperate and tropical 
bioregions and are aligned to local minima of the mean density 
curve (18.7 and 3.4°C). The characteristic SBT of tropical bioregions 
is dependent on their geographical position. The bioregions 
situated along the western margins of continents (Tr‐EA and Tr‐EP) 
represent the slightly colder temperatures of upwelling zones. See 
Figure 1 for the abbreviations of bioregions [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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analysis lumps three MEOW realms into a single, vast bioregion com-
prising the tropical to subtropical Indo‐Pacific (Tr‐IP).

Our unipartite network solution suggests fewer and consider-
ably coarser bioregions than the cluster‐based approach of Costello 
et al. (2017). The coastal biogeographical units of Costello et al. 
(2017) are almost perfectly nested (Table 2) in our bioregions shown 
in Figure 1. The main differences between the partitionings probably 
emerge because we did not lump benthic and nektonic/planktonic 
organisms. We suggest that the partitioning output of the “unipa-
rtite‐infomap” method represents higher‐level units in the biogeo-
graphical hierarchy, perhaps at the level of realms, whereas the 
bioregions of Costello et al. (2017) are lower in the hierarchy, such as 
at the level of provinces.

4.1.2 | Robustness of biogeographical partitionings

The fact that similar patterns emerge from independent modern and 
fossil datasets suggests a limited impact of incomplete sampling and 
random error. Simulations show these factors to have only marginal ef-
fects on the precision of the partitioning output (Supporting Information 
Appendix S1). Given that the palaeo‐partitioning is based on much 
fewer occurrence data than the recent partitioning scheme, we are not 
concerned by the somewhat noisier palaeo‐patterns (e.g., around the 
poorly sampled Antarctic area). It is highly unlikely that the same basic 
pattern would emerge from the two independent datasets if they were 
incompatible and if the partitioning algorithm was inappropriate.

The partitioning patterns of individual taxa suggest that they 
share most major biogeographical boundaries. Some of the barriers 

allow better connectedness for specific groups, such as the oceanic 
barrier between New Zealand and Australia for echinoderms and 
decapods, but most bioregions are recognizable across the taxo-
nomic subsets. Based on the AMIs between the partitionings, their 
patterns of similarity appear to be decoupled from phylogeny, ecol-
ogy or larval types of the groups. The exploration of taxonomic 
idiosyncrasies is beyond the scope of the present study.

Meaningful bioregions can be outlined robustly without environ-
mental information even in relatively poor sampling conditions. This is 
supported not only by the past partitioning but also by the similarity 
of the taxon‐specific results. This observation is especially relevant 
for outlining and tracing bioregions through deep time (Kiel, 2017; 
Kocsis et al., 2018), when quantifiable environmental information is 
sparse.

4.2 | The determinants of stability

Based on our results, continent configuration and the latitudinal tem-
perature gradient jointly define marine bioregionalization. Landmasses 
and open ocean boundaries outline its primary features by control-
ling the distribution and connectivity patterns of the shallow benthic 
habitat space. Seawater temperature acts as a secondary determi-
nant, arranging bioregions latitudinally in the connected areas.

4.2.1 | Continent configuration

Plate tectonic processes have a direct effect on landmass‐barrier 
formation, which are generally unlikely to change over a few mil-
lions of years. A major exception is the closing Isthmus of Panama 

TA B L E  1   The importance of environmental variables as predictors for the partitioning shown in Figure 1

Variable

PCA Random forests Logistic regression

Mean angle 
of vectors (°)

Mean decrease in 
accuracy 
(randomForest)

Mean decrease in 
Gini index 
(randomForest)

Conditional mean 
decrease in 
accuracy (party)

Coefficient 
estimate z value D2

O2 38.17 – – – 0.05 5.56 19.5

PO4
3− 39.07 189.69 241.61 0.059 0.29 17.16 17.6

NO3
− 40.72 – – – 0.419 29.05 14.1

SBT 37.70 277.43 317.01 0.063 3.21 226.65 47.2

SBT range 40.43 81.70 82.26 0.001 −0.09 −15.52 0.2

Bottom PP 38.01 64.61 65.12 < 0.001 −0.21 −27.89 0.1

Surface PP 41.89 75.07 60.26 0.001 0.22 25.26 1.8

Salinity 37.85 151.03 202.36 0.015 0.06 10.84 0.1

SiO4
4‐ 41.43 – – – −0.6 −47.64 9

SWD – – – – 1.09 170.17 19.5

Notes. The strongest value in each assessment type is in bold. The SBT is the most important predictor with all three approaches. The results of the 
vector alignment tests and random forests are based on cell means. The multiple logistic regression of bioregion cell pairs (n = 349,360) uses differences 
between cell means (response = 0 for the same bioregion and response = 1 for different bioregions, using the neighbouring bioregions, where at least 
one cell is from the boundary area of a bioregion). The D2 values indicate the explained variance of the parameter when it is used to model the transi-
tions on its own. Replacing the shortest distances on water (SWD) with great circle distances resulted in almost identical values. The total D2 of the 
model is 57.59%. Abbreviations: PCA: principal components analysis; PP: primary production; SBT: sea bottom temperature; SWD: shortest sea water 
distance.
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in the Pliocene c. 2.8 Ma (O’Dea et al., 2016), with well‐known bio-
geographical consequences (McKinney, 1998). The Pleistocene par-
titioning indicates that evolutionary changes of cell compositions 
were not substantial enough to reflect unequivocally different bi-
oregion membership. The differences seen in the by‐slice partition-
ings (compare Figure 5 with Supporting Information Figure S1.11) 
also reflect the uncertainty of bioregion assignment. This pattern of 
faunal distributions suggests that although a vicariance event (e.g., 
emergence of a landmass barrier) can interrupt gene flow in a geo-
logical instant, the faunal compositions of the resulting areas might 

show delayed divergence. This isthmus is now an effective barrier 
for all marine taxa, and it is the single dominant barrier for reef corals 
(cf. Veron, Stafford‐Smith, DeVantier, & Turak, 2015).

The physical obstacles imposed by landmasses are more diffi-
cult to overcome for marine organisms than greater distances in 
water. Populations of the same species can be genetically distinct 
over shorter distances (300–400 km) because of historical barri-
ers (such as during the lower sea level of the Pleistocene; Barber, 
Palumbi, Erdmann, & Moosa, 2000). Small‐scale barriers to gene 
flow of individual species (Peluso et al., 2018) can be transgressed 

F I G U R E  4   Interconnection of bioregions in terms of faunal composition and connection type. A secondary graph of the established 
bioregions (Figure 1) indicates the types of relationships between bioregion faunas. In total, five out of 29 connections are over land, 13 
are sampled, direct latitudinal, six are longitudinal oceanic, and five are both latitudinal and oceanic. See Figure 1 for the abbreviations of 
bioregions [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  5   Biogeographical partitioning of the species‐level fossil dataset (PBDB) from the last 10 Myr (Cenozoic 6, late Miocene–
Pleistocene interval), with the same methods as Figure 1, except for a coarser spatial resolution. (a) A map of the partitioning. (b) The 
distribution of sampled cells with the results of bootstrapping. Bioregions with black names match unambiguously with those of the recent, 
thus we named them so. Bioregions with red labels indicate changes; the Tr‐WP bioregion is split into two independent bioregions indicated 
as North‐East Pacific (NEP) and South‐East Pacific (SEP), and its tropical part is joined with the tropical west Atlantic (Tr‐WA). The Antarctic 
bioregion of Figure 1 is fragmented, probably as a result of the poorer sampling of the region. We calculated the colours of the bioregions 
(online version) based on their distances to the centroids of the bioregions shown in Figure 1. The same spatial resolution partitioning of the 
recent dataset is shown in Supporting Information Figure S1.6a. See Supporting Information Appendix S3 for the shapefile of the partitioning 
[Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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by more dispersible species that will ensure ecological and bio-
geographical connections. In the absence of substantial environ-
mental change, vast distances over deep ocean are required to 
cause bioregion boundaries, such as those between the tropical 
Indo‐Pacific and the Eastern Pacific (the East Pacific Barrier; 
Wood et al., 2016) and between the two tropical Atlantic biore-
gions. These boundaries are occasionally crossed by means of 
transoceanic rafting (Thiel & Gutow, 2005), even when dispersal 
is prevented by additional obstacles imposed by current systems 
(Fraser, Kay, Plessis, & Ryan, 2017). Bioregions thus seem to be un-
affected by random invasions, but present‐day warming‐induced 

relocations of species (Magurran, Dornelas, Moyes, Gotelli, & 
McGill, 2015) may meet the intensity needed for an expansion 

F I G U R E  6   The history of global marine biogeography in the 
past 10 Myr at the geological age level. (a) Pleistocene age. (b) 
Pliocene age. (c) Messinian/Tortonian ages. Bioregions coded 
with the same colours are linked by the analytical method (they 
represent the same clusters); their exact colour (online version) 
values are based on their distances to the bioregions shown in 
Figure 1. The bioregions are stable across millions of years. Ages 
indicate the mean age of the time slice. See Figures 1 and 5 for the 
abbreviations of bioregion names [Colour figure can be viewed at 
wileyonlinelibrary.com]

TA B L E  2   Comparison of the outlined bioregions with those 
proposed by Costello et al. (2017)

Bioregions in this 
study

Seas group of Costello et al. 
(2017) Number

Arc (B) Inner Baltic Sea 1

Eu Black Sea 2

Eu NE Atlantic 3

Arc Norwegian Sea 4

Eu Mediterranean 5

Arc Arctic seas 6

Arc N Pacific 7

Arc N American Boreal 8

– Mid‐tropical North Pacific 
Ocean

9

Tr‐EP South‐east Pacific 10

Tr‐WA Caribbean & Gulf of Mexico 11

Tr‐EP Gulf of California 12

Tr‐IP Indo‐Pacific seas & Indian 
Ocean

13

Tr‐IP Gulfs of Aqaba, Aden, Suez, 
Red Sea

14

– Tasman Sea 15

Tr‐IP Coral Sea 16

Tr‐IP Mid South Tropical Pacific 17

Eu/Arc Offshore & NW North Atlantic 18

Tr‐IP Offshore Indian Ocean 19

Tr‐IP/Arc Offshore W Pacific 20

Eu/Tr‐WA Offshore S Atlantic 21

– Offshore mid‐E Pacific 22

Tr‐EA Gulf of Guinea 23

Aa (Aa/SA) Rio de La Plata 24

Aa (Aa/SA) Chile 25

Te‐Au South Australia 26

SAf S Africa 27

NZ New Zealand 28

YS NW Pacific 29

Aa (Aa/Aa) Southern Ocean 30

Notes. Italic entries indicate dominantly offshore realms. These have a 
worse match with our partitioning results, probably because of the dif-
ferent taxonomic and depth scope of the two analyses. The Inner Baltic 
Sea is outlined as an independent unit in partitionings of higher spatial 
resolutions (Supporting Information Figure S1.6) and is therefore also 
indicated with (B). Likewise, the Antarctic (Aa) bioregion shows a nested 
structure at fine spatial resolutions. These units are indicated as “Aa/SA” 
(South American) and “Aa/Aa” (sensu stricto Antarctic) subregions. 
Abbreviations of bioregions ordered by size: Tr‐IP: tropical Indo‐Pacific; 
Arc: Arctic; Tr‐WA: Western Atlantic; Aa: Antarctic; Eu: European; Te‐Au: 
temperate Australian; NZ: New Zealandian; Tr‐EP: tropical East Pacific; 
YS: Yellow Sea; Tr‐EA: tropical East Atlantic; SAf: South African.

www.wileyonlinelibrary.com


     |  1117KOCSIS et al.

of some bioregions at the expense of others (García Molinos 
et al., 2016).

The importance of landmass and open ocean boundaries indicates 
that changing continental configuration over geological time‐scales 
should have a direct effect on coastal bioregionalization, as already 
suggested by Valentine et al. (1978). This tectonic driver could explain 
the observed relationship between species richness and continental 
fragmentation (Zaffos et al., 2017). The slow drift of continents, with 
a potential lag of faunal response, is likely to constrain the pace of 
biogeographical changes, suggesting that without abrupt changes in 
faunal composition (i.e., a mass extinction; Kocsis et al., 2018), global 
biogeography should feature similar stability over geological time.

4.2.2 | Seawater temperature

Beyond the effects of continental configuration, temperature has 
the most important effect on bioregion boundaries. Temperature 
is a well‐known driver of marine species distributions (Sunday et 
al., 2012); it has the greatest influence on marine regional diversity 
(Tittensor et al., 2010) and is dominant in shaping the marine latitu-
dinal diversity gradient (Chaudhary et al., 2016). Steep temperature 
(and salinity) gradients in the seas are often generated by surface 
currents, which might act as direct dispersal barriers (Gaylord & 
Gaines, 2000). However, the probable resilience of the structure to 
invaders renders the physiological adaptation of marine organisms 
to specific temperature regimes (Sunday et al., 2012) a more influ-
ential determinant.

Temperature differences do not need to be great to separate 
bioregions, as long as differences between bioregions exceed the 
natural variability within them. In this framework, even the ex-
tremely large size of the Tr‐IP bioregion is plausible. The lack of a lon-
gitudinal land barrier between the tropical waters of the Indian and 
Pacific ensures connectivity between the two ocean basins, whereas 
the relatively short distances between shallow habitat areas of the 
region (Figure 1) hinder its fragmentation into smaller units. The 
bioregion is centred around the East Indies Triangle (Briggs, 2005), 
where the high species diversity also increases the chance of range 
overlaps, and therefore, the integrity of the region. Range sizes of 
some groups are also reported to be greater in the tropics in associa-
tion with similar temperatures (Tomašových, Jablonski, Berke, Krug, 
& Valentine, 2015), and the Tr‐IP covers a relatively narrow SBT 
range (Figure 3). However, changes in seawater temperature might 
lead to the disruption of established bioregions, which, if persistent, 
might give way to some form of allopatric speciation (Heads, 2005). 
For example, the Yellow Sea (YS), temperate Australian (Te‐Au) and 
South African (SAf) bioregions show a close connection to the Tr‐IP 
bioregion. Weak or temporally variable boundaries could also allow 
the diffusion of species from Tr‐IP over geological time‐scales, in 
accordance with the “out‐of‐the‐tropics” hypothesis (Jablonski, 
Roy, & Valentine, 2006). The structure of bioregionalization did not 
change in response to environmental conditions, but it is likely that 
climatic changes led to the latitudinal shift of bioregion boundaries. 

Demonstrating these changes, however, is limited by the density of 
fossil samples and thus the spatial resolution of the partitionings.

Environmental determinants seem to be more important in the 
marine realm than on land, where the influence of plate tectonics 
dominates by far (Ficetola et al., 2017). Although the configuration 
of continents has the greatest effect on the distribution of biore-
gions, the secondary role of temperature is also vital in supporting 
the structure of biogeography. The effects of temperature‐based 
barriers on the faunal similarity of bioregions are similar to those of 
other boundaries. In theory, owing to the linked nature of shallow 
benthic environments of the world, the removal of temperature‐
related barriers could lead to a biogeographically undivided world.

4.2.3 | Implications for the future

The biogeographical patterns of the past suggest that that the pri-
mary structure of the marine habitat might not change substantially 
with global warming. Assuming that the structure of the ocean 
circulation system remains intact (Wilson & Kirkendale, 2016), the 
arrangement of bioregions might fundamentally be preserved, per-
haps with poleward‐shifted boundaries. However, the joint effects 
of anthropogenic climate change and our direct interference with 
the marine environment by pollution (Halpern et al., 2008), over-
exploitation (Coleman & Williams, 2002) and species introductions 
(Bax, Williamson, Aguero, Gonzalez, & Geeves, 2003) may have un-
predictable effects on bioregionalization. The apparent homogeni-
zation of the biota (Magurran et al., 2015) and the novel interactions 
amongst species that migrate at different paces (García Molinos et 
al., 2016) may also lead to extinctions. The opening of niches and 
the rapid spread of opportunistic taxa may then quickly reshape the 
standing biogeographical patterns (Kocsis et al., 2018).
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